VISPARK: GPU-ACCELERATED DISTRIBUTED VISUAL COMPUTING USING SPARK∗

WOOHYUK CHO†, SUMIN HONG†, AND WON-KI JEONG†

Abstract. With the growing need of big-data processing in diverse application domains, MapReduce (e.g., Hadoop) has become one of the standard computing paradigms for large-scale computing on a cluster system. Despite its popularity, the current MapReduce framework suffers from inflexibility and inefficiency inherent to its programming model and system architecture. In order to address these problems, we propose VISPARK, a novel extension of Spark for GPU-accelerated MapReduce processing on array-based scientific computing and image processing tasks. VISPARK provides an easy-to-use, Python-like high-level language syntax and a novel data abstraction for MapReduce programming on a GPU cluster system. VISPARK introduces a programming abstraction for accessing neighbor data in the mapper function, which greatly simplifies many image processing tasks using MapReduce by reducing memory footprints and bypassing the reduce stage. VISPARK provides socket-based halo communication that synchronizes between data partitions transparently from the users, which is necessary for many scientific computing problems in distributed systems. VISPARK also provides domain-specific functions and language supports specifically designed for high-performance computing and image processing applications. We demonstrate the performance of our prototype system on several visual computing tasks, such as image processing, volume rendering, K-means clustering, and heat transfer simulation.

Key words. MapReduce, GPU, distributed computing, visualization, domain-specific language

AMS subject classifications. 65Y05, 68Q85

DOI. 10.1137/15M1026407

1. Introduction. With advent of advances in data acquisition and network technology, big data has become one of the hottest buzzwords these days. Big data commonly refers to datasets of sizes beyond the capability of conventional data processing workflow, ranging from a few terabytes to petabytes. In his technical report [17], Laney defined big data using the “3Vs” (high volume, high velocity, and high variety). According to this definition, not only the sheer size of the data but also its acquisition speed and diversity in data type represent the characteristics of big data. Applications of big data can be found in diverse fields, such as Internet and media service, government, retail business, and science and technology. For example, Facebook processes around 2.5 billion pieces of content and 500 terabytes of data daily [21]. Multibeam electron microscopes collect roughly 2.5 terabytes of brain images per hour in connectome research [16]. The Large Hadron Collider at CERN continuously generates nearly 600 million collisions per second, which makes the data rate higher than 150 million petabytes per year [6]. Such an extreme scale of data size cannot be properly handled by a standard server-level computer using conventional

∗Received by the editors June 30, 2015; accepted for publication (in revised form) August 3, 2016; published electronically October 27, 2016.

http://www.siam.org/journals/sisc/38-5/M102640.html

Funding: This work was partially supported by an Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (R0190-16-2012, High Performance Big Data Analytics Platform Performance Acceleration Technologies Development) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2058773).

†School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea (whchoi@unist.ac.kr, sumin246@unist.ac.kr, wkjeong@unist.ac.kr).
data analysis software. Therefore, in the era of big data, we need a paradigm shift in computing and programming models.

One of the most popular big data processing models is MapReduce [11], and its open-source implementation is Hadoop [2]. In this programming model, the task is decomposed into two user-programmable stages—the map stage processes the input data and generates key-value pairs, and the reduce stage processes a group of values for the same key. There is a nonprogrammable sorting stage between the map and reduce stages, which arranges key-value data according to the order of keys. Hadoop provides a simplified programming abstraction so that the user needs to implement only the map and reduce functions (i.e., the mapper and the reducer) without considering data communication and task decomposition for large-scale distributed parallel processing. The Hadoop system can run on a cluster of low-cost commodity PCs and provides a software fault tolerance mechanism for reliable processing. Due to its simplicity and reliability, Hadoop has become a de facto standard for big data processing in cluster and cloud environments.

Despite its popularity, the Hadoop system also suffers from several drawbacks. First, its programming model is too restrictive for certain types of computing tasks. The main assumption of the MapReduce model is that the data are provided as a list of key-value pairs, and there is no dependency between data values so that the data can be easily decomposed into chunks and processed independently. However, in many scientific computing and image processing problems, data are defined on a regular grid, i.e., arrays, and the neighbor data are necessary for computation, which makes the MapReduce system difficult to apply. The common approach is to generate multiple copies of the input data in the mapper so that the reducer can collect all the necessary neighbor data, which is unnecessarily inefficient in terms of memory footprint. This inefficiency comes from the restriction of the MapReduce programming model, where the mapper is designed to be executed on each data element independently and neighbor data access is prohibited. Second, Hadoop is not a performance-optimized system—data communication relies on a slow disk I/O, and the runtime system is written in Java. Hadoop is designed to favor large-scale distributed batch processing, but unlike conventional large-scale high-performance computing (i.e., supercomputing), low-level performance optimization has not been an important part of the system architecture. A recent study [3] shows that the scale-up Hadoop performs better than the scale-out Hadoop, which confirms that there is still much room for performance improvement in the current Hadoop/MapReduce system. One of the notable recent MapReduce systems is Spark [26], which introduces in-memory cache and streaming to improve the performance of the conventional Hadoop system by reducing expensive disk I/O and reusing data in memory.

To address the limitation of the current Hadoop system, we propose Vispark, an extension of the Spark MapReduce framework for high-performance visual computing on a GPU-based cluster system. Vispark is a combination of a high-level MapReduce programming language and its runtime system, and it is specifically designed to overcome the problems of Hadoop by providing a simple programming model and abstraction to scale-up the system and leverage the state-of-the-art, high-performance computing technology. Vispark’s language syntax is inspired by Vivaldi [10], a domain-specific language for visualization that uses Python syntax and high-level abstractions for volume rendering and computing. Without the knowledge of GPU-specific APIs such as NVIDIA CUDA, and OpenCL, the user can write a Python-like mapper code using Vispark language, and the Vispark translator and runtime system will automatically execute the code on the target GPU architecture. Vispark also provides a new
abstract data type, the Vispark resilient distributed dataset (VRDD), to manage GPU
data in Spark, and synchronization between the CPU and the GPU is automatically
done via lazy evaluation of the Spark system. Another novel feature of Vispark is that
it provides a simple MapReduce programming abstraction, Iterator, and automatic
halo synchronization using socket communication, to access local data without explicit
data management by the user. Since the iterator will allow the mapper to access local
data, many scientific computing tasks using array data, such as stencil computations
on two-dimensional (2D) and 3D rectilinear grids, can be easily implemented in the
mapper stage. By doing that, the performance bottleneck of the disk-based shuffle
stage can be effectively avoided. We believe Vispark is a novel blending of a domain-
specific language and a MapReduce framework that unlocks the restrictions of the
conventional Hadoop and will eventually enhance the usability and performance of
the MapReduce system.

2. Related work.

MapReduce framework. The concept of MapReduce, originally proposed by
Google [11], is considered a standard parallel computing framework for large-scale un-
structured data processing. In MapReduce, designing two stages of processing, such
as map and reduce, is left to the users, while the system deals with the rest of the
processing details, such as communication, scheduling, and data splitting. Hadoop [2]
is an open-source implementation of the MapReduce concept, and its ecosystem pro-
vides a wide variety of software stacks, such as the Hadoop Distributed File System
(HDFS), Yarn, and others. Recently, Spark [27] has evolved into another success-
ful big data processing engine. Spark’s programming model inherits the MapReduce
computing model from Hadoop while introducing a novel data abstraction called a
resilient distributed dataset (RDD). A novel feature of RDD is in-memory caching.
This means that RDD can reside on memory and be reused over multiple transforma-
tions; therefore, certain types of tasks, such as iterative algorithms, can be processed
much faster.

MapReduce for scientific data. MapReduce originally was developed to han-
dle unstructured text data, but there have been research efforts to make MapReduce
able to handle array-based scientific datasets as well. Buck et al. [8] proposed Sci-
Hadoop by introducing three optimization techniques during the mapping stage on
NetCDF data. Their method does not access the array directly but evaluates holisti-
cally aggregated queries in order to map the data to a semantical structure. SIDR [7]
is a successor of SciHadoop and removes the global barrier to allow asynchronous
mapper and reducer execution. In addition, SIDR’s task scheduler is based on data
dependency, which improves load-balancing between data partitions. Due to such
optimization, SIDR performs two to three times faster than the conventional Hadoop
system and observes roughly 137% performance enhancement over SciHadoop. An-
other related work is SciMATE [24], which is implemented on top of MATE and
enables users to customize and process scientific data in various formats, including
HDF5, NetCDF, or regular flat files. SciMATE is a data format-independent sys-
tem that hides the physical view of the file structure and provides only the simple
array-like logical view of the data. In the context of using MapReduce for relational
data, SciHive [14] proposed a different approach to access stencil-based multidimen-
sional input by constructing a correspondence between array-based data and the Hive
lookup table. SciHive also supports lazy evaluation for dynamic file loading. The
proposed system shows a significant performance improvement and good scalability
over large-scale scientific datasets. MapReduce is also popular in managing databases, either with or without using SQL [23] [25]. Recently, Armbrust et al. [4] presented a new module in Spark called Spark SQL, which tightly integrates relational and procedural processing as well as provides an extensible optimizer, Catalyst, to employ various optimization rules, data resources, and data types. However, no existing system properly addressed the problems of MapReduce for array-based processing using local neighbor.

MapReduce framework on the GPU. As computing accelerators become popular in high-performance computing, accelerators have gained much attention to speed up time-consuming tasks in MapReduce. One of the earliest GPU-based MapReduce systems was introduced by Catanzaro, Sundaram, and Keutzer [9]. In this work, the authors provided a code generation platform for MapReduce that leverages prebuilt high-performance primitive operations on the GPU. Mars [13] is another fusion framework that harnesses GPUs’ power to accelerate MapReduce tasks. Mars provides GPU-specific APIs, which enhance usability of the system. In addition, Mars supports heterogeneous computing using both the CPU and the GPU, which results in about 40% performance gain over GPU-only implementation. Stuart and Owens [20] proposed a C++ and MPI-based GPU MapReduce system. The proposed system showed good performance due to its optimized implementation and user-written CUDA code, but the system is not written for general MapReduce problems as in Hadoop or Spark. In addition, its usability is limited because it does not supporting general key-value array data type and because of its unconventional shuffle-sorting implementation. Another shortcoming of the system is that it requires native CUDA source code for GPU task offloading, which imposes more programming burden to the users. Recently, other variants of the GPU-based MapReduce framework were presented further, such as Surena [1] and Grex [5]. HadoopCL [15] was a seamless combination of OpenCL and Hadoop and provides an easy-to-learn and flexible API in a particular high-performance computing system. Last but not least, beyond the NVIDIA GPU-based systems, there were also optimized MapReduce frameworks for AMD GPUs (StreamMR [12]) and Intel Xeon Phi coprocessors (MrPhi [18]). However, no existing system provides a language-level easy-to-use programming model for GPU clusters as in Vispark.

MapReduce for visual computing. Even though MapReduce is a commonly used big-data processing platform, its application in large-scale visual computing, such as computer graphics and image processing, is rather limited due to the nature of the system, which favors unstructured text data. Hence, there exist only a handful of works in this direction, such as using MapReduce on commodity clusters for geometry processing [22] or volume rendering [19].

3. **Vispark design.** Vispark mainly consists of two components: a MapReduce programming language and a distributed runtime system. Vispark’s programming language borrows Python-like language syntax from Vivaldi so that novice users can easily write GPU-accelerated MapReduce programs without using any GPU-specific APIs. The Vispark runtime system is based on Spark with novel extensions for automatic GPU task offloading and memory management.

3.1. **Vispark overview.** The main structure of the Vispark program is similar to that of Spark or other MapReduce frameworks. A driver function manages the overall control flow of the application and mapper-reducer functions operate on data. However, Vispark introduces a new data abstraction for managing GPU memory and
a *programming abstraction* for accessing local neighbor data in mapper functions, which are not presented in the conventional MapReduce systems, including Spark.

Code 1 is an example of Vispark code for the mean image processing filter. As shown in this example, Vispark code consists of a *main* function, which drives the entire computing process, and mapper and reducer functions, which look similar to regular Python functions (def func()) and operate on an individual data element in parallel. In this example, the main function performs the following tasks: the input image is loaded (line 11), its VRDD is created (line 12), the mapper for the mean filter is executed on the GPU using vmap and range (line 13), and the result is stored as an image file (lines 14–15). The mapper function in this example is meanfilter(), which reads four neighbor pixel values (i.e., up, down, left, and right) using point_query_2d() function (lines 2–5), computes their average value (line 6), and returns the key-value pair result (i.e., the average value with the x and y indices for the pixel location, line 7). By using neighbor access functions provided by Vispark, users can easily implement a wider range of visual computing algorithms using a MapReduce programming model. We will discuss Vispark’s language abstractions and features in depth in the following sections.

Code 1

Simple Vispark mean image filter example code.

```python
1 def meanfilter(data, x, y):
2     u = point_query_2d(data, x, y+1)
3     d = point_query_2d(data, x, y-1)
4     r = point_query_2d(data, x+1, y)
5     l = point_query_2d(data, x-1, y)
6     ret = (u+d+r+l)/4.0
7     return ((x,y),ret)
8
9 if __name__ == "__main__":
10    sc = SparkContext(appName="meanfilter_vispark")
11    img = np.fromstring(Image.open("lenna.png").tostring())
12    imgRDD = sc.parallelize(img, Tag="VISPARK")
13    imgRDD = imgRDD.vmap(meanfilter(data, x, y).range(512, 512))
14    ret = np.array(sorted(imgRDD.collect()))[:,1].astype(np.uint8)
15    Image.fromstring("L", (512,512), ret.tostring()).save("out.png")
```

3.2. Vispark resilient distributed dataset. Spark provides a data abstraction called an RDD. Similarly, Vispark introduces a *VRDD*, an extension of the RDD for *structured array data* residing on the GPU. A VRDD stores data with extra information, such as data type, range, partition, and shape, in addition to the information in an RDD. A VRDD treats structured array data differently than a conventional Spark RDD. In conventional Spark, when a transformation is applied to an RDD, the worker process first loads the data as an iterator object and applies the function to every individual element by iterating over the data. On the other hand, for a VRDD in Vispark, the worker process copies the chunk of the data into the GPU and launches a GPU kernel on the data. By doing that, the GPU kernel can access the entire array data, which is not supported in the conventional MapReduce model. In addition, since the neighbor data can be accessed in the transformation function, data interpolation, i.e., data sampling at a noninteger index location, can be implemented, which is useful in image and volume processing tasks. Another important difference from Spark’s RDD is that VRDD allows the user to access the data outside the current partition. The region overlapped with neighbor partitions is called *halo* (see Figure 1). In many scientific computing and image processing algorithms, computations often require accessing its local neighbor data, for example, spatial image filtering.
Because a VRDD allows accessing neighbor data using halo, computing tasks can be distributed to different nodes and processed independently. More detailed discussion about halo is given in section 3.4.

Similar to an RDD, a VRDD can be constructed using the `parallelize` command with a tag “VISPARK” as follows:

```java
VisRDD = SparkContext.parallelize(inData, Tag="VISPARK", In=4)
```

When a VRDD is created, the user can specify the number of partitions. Unlike Spark, which only allows partitioning of the current data, Vispark provides two partitioning strategies: *input* and *output* splits. The input split creates the partitions of the current VRDD data, and the number of partitions can be assigned using an `In` tag. In the example shown above, `In=4` implies that VisRDD is created with the input data, `inData`, which will be split into four partitions.

The output split creates the partitions of the *output* VRDD data, which is not defined in the current VRDD but will be newly generated by the transformations (e.g., mappers, reducers, filters). In the following example, `Out=(2,2)` is a 2D partitioning of the output VRDD that generates four partitions in total. (Note that multidimensional partitioning is available.) If only the output split strategy is used, the entire input data will be broadcast to each worker process without partitioning.

```java
VisRDD = SparkContext.parallelize(inData, Tag="VISPARK", Out=(2,2))
```

VRDDs can be created from storage sources supported by Spark, such as local file systems and HDFS. The following example creates a VRDD by reading large binary data from HDFS (the server’s IP address is 10.20.1.1) located under the directory `Data`:

```java
VisRDD = SparkContext.binaryFiles('hdfs://10.20.1.1/Data', tag="VISPARK")
```
In order to handle large binary data in Vispark, we provide the Vispark HDFS data uploader. The uploader splits the input data into a user-specified number of partitions (or aligned to user-specified partition size) and store them in HDFS with metadata for neighbor information. For example, if a $2048 \times 2048 \times 2048$ 3D volume is given, and the user splits this volume into 8 slices along each dimension, then each partition is a $256 \times 256 \times 256$ 3D block, and the metadata stores the $8 \times 8 \times 8$ grid information. Each data partition must be smaller than the predefined maximum size based on the size of GPU memory.

Vispark uses its own data partitioning schemes as introduced above, but it relies on Spark's task scheduler for data distribution. Each data partition is assigned to a Vispark worker process, and if there are more partitions than Vispark workers then each worker processes multiple partitions sequentially. Vispark controls the maximum concurrent worker processes assigned to the same GPU (i.e., the number of workers per computing node) in order to avoid running out of GPU memory.

3.3. Vispark mapper (vmap). Vispark provides GPU-accelerated processing via mappers because many compute-intensive visual computing tasks can be implemented in the mapper function and the shuffle-reducer stages can be skipped. A Vispark GPU mapper can be implemented using Vispark's Python-like language syntax, and its execution can be initiated using a vmap transformation function. An example of mapper execution is shown below:

$$\text{VisRDD} = \text{VisRDD}.\text{vmap}(\text{mip(data, x, y).range(512, 512)})$$

In this example, the input VisRDD is processed using the mapper function mip(), and the new 2D VisRDD of size 512×512 will be generated as a result of this mapper transformation. The range parameter can be used as in this example to specify the dimension of the output VRDD. If range is not defined, the output VRDD will have the same size as the input VRDD. data, x, y, and z are Vispark's predefined variables designated to the mapper's parameters—data is the handle for the current RDD's data array, and x, y, and z are the array index to which the mapper function is applied.

The language syntax of the Vispark GPU mapper is similar to that of the conventional Python except a few domain-specific functions and language definitions. For example, Code 2 shown below is an example of Vispark GPU mapper implementation for maximum intensity projection (MIP) volume rendering. In this example, orthogonal_iter is used to walk along the viewing ray for volume rendering, and point_query_3d() sampling function is used to access the array data. (A more detailed explanation about Vispark's domain-specific functions will be given below.)

![Code 2](image-url)
The Vispark mapper code is translated to GPU code *just-in-time* when the mapper is executed by `vmap`. Code 3 is a CUDA code translated from Code 2 by the Vispark translator. Because Vispark follows the language syntax similar to Python, variable types are not declared explicitly in the mapper code. When the mapper function is executed, necessary variable types are determined dynamically and the Vispark translator will add the variable types in the translated CUDA code. For example, the data type of `val` is determined as `float` in Code 3 because the return type of the data query function (i.e., `point_query_3d()`) returns float value. `VISPARK_DATA_RANGE` shown in Code 3 is a predefined Vispark data type to define the shape of data. The input data type for `volume` in Code 3 is determined as `short` by the Vispark worker process when VRDD is transferred. `RESULT_DTYPE` is another Vispark predefined data type for key-value pairs in mapper’s return data. Note how Vispark’s Python-like syntax is translated into C-like CUDA syntax; for example, Python-style `for` loop for orthogonal iterator in Code 2 is converted to C-style `for` loop in Code 3.

```c
__global__ void mipshort(RESULT_DTYPE* rb, VISPARK_DATA_RANGE* rb_DATA_RANGE, short* volume, VISPARK_DATA_RANGE* volume_DATA_RANGE, int x_start, int x_end, int y_start, int y_end ){
    int x = threadIdx.x + blockDim.x * blockIdx.x + x_start ;
    int y = threadIdx.y + blockDim.y * blockIdx.y + y_start ;

    if( x_end <= x || y_end <= y) return ;
    line_iter line_iter ;
    float step ;
    float max ;
    float z_val ;
    step = 1.0 ;
    line_iter = orthogonal_iter (volume, x, y, step , volume_DATA_RANGE ) ;

    max = 0 ;
    for(float3 elem = line_iter.begin(); line_iter.valid(); elem = line_iter.next()){
        float val ;
        val = point_query_3d<float >(volume, elem, volume_DATA_RANGE );
        if( max < val ){
            max = val ;
        }
    }
    z_val = line_iter.get_depth () ;

    rb[(x-rb_DATA_RANGE->buffer_start.x)+(y-rb_DATA_RANGE->buffer_start.y)*(rb_DATA_RANGE->buffer_end.x- rb_DATA_RANGE->buffer_start.x)] = RESULT_DTYPE(x,y,z_val, max ) ;
    return ;
}
```

Once the Vispark mapper function is translated into the CUDA source code, the VRDD worker process prepares the GPU data and launches the CUDA kernel. The worker process estimates the total GPU memory size required by the mapper code and dynamically allocates the GPU memory per data partition. Since the mapper’s output can be a combination of multiple data items, such as a list of key and values, the output buffer size should be estimated during the CUDA translation time by
analyzing the mapper code. Once required GPU memory is allocated, the worker process performs a host-to-device memory copy and launches the CUDA kernel for the compiled CUDA source code. Once the GPU computation is completed, the result will be copied back to the CPU memory. We used PyCUDA to coordinate GPU processing in Python.

Vispark provides domain-specific functions specifically designed for array data access and numerical computations often used in scientific computing and image processing. Such functions can be used only in the GPU mapper code and are translated into CUDA device functions. Some of them are listed below:

- **Samplers:** Since the input data are defined on a rectilinear grid (array), Vispark provides various memory samplers for hardware-accelerated interpolation, for example, `point/linear/cubic_query_nD()` for nearest, linear interpolation, and cubic interpolation sampling.
- **Differential operators:** First- and second-order differential operators, such as `linear/cubic_gradient_nD()` and `laplacian()`, are provided for local differential computing.
- **Iterators:** Vispark provides `stl-like` iterators to access local neighbor data for each data location (detailed discussion will be given in the following section).
- **Shading Models:** Vispark provides widely used illumination models, such as `Phong()` and `Diffuse()`, for volume rendering computation.

3.4. Halo communication.

An important feature of Vispark is automatic halo synchronization that is transparent to the users. Halo communication is crucial in scientific computing problems because many numerical algorithms use iterative update solutions via spatial discretization of differential operators. In Vispark, the user can simply attach the `halo` command to the mapper function using a dot `.` operator with the halo size and type when the mapper is called in order to activate halo synchronization between workers. The Vispark translator can detect whether the mapper requires halo synchronization or not by checking the presence of the `halo` command. If the halo command is used with a mapper, then halo synchronization is activated right before the mapper execution. The following is an example of mapper execution using a halo command:

```python
VisRDD = VisRDD.vmap(filter(data, x, y).halo(simple, 3))
```

The usage of `halo` command is as follows:

```python
halo(halo type, halo size)
```

There are two types of halo, `simple` and `full`. Simple halo is the neighbors along canonical directions, such as top, bottom, left, and right directions for 2D and additional front and back directions for 3D. Full halo is the complete eight directions for 2D and 26 directions for 3D. For example, a finite difference method using central difference only requires simple halo. However, a convolution filter, such as the Gaussian filter, requires full halo to access a rectangular neighbor region. The halo size is the width measured from the edge of the partition to the end of the halo region (see Figure 2).

Vispark’s halo synchronization is implemented using socket communication. There is a dedicated process that handles halo communication, i.e., the `halo manager`. When Vispark is started, the halo manager process is launched and waits for halo requests from workers. Halo synchronization consists of two steps: the first step is workers sending out halo data to the halo manager (scatter), and the next step is workers collecting halo data from the halo manager (gather). We separated these steps to
avoid race conditions, meaning that the first step must be completely finished (i.e., halo manager should collect all the halo data from workers before responding to halo requests). Vispark effectively avoids disk-based shuffle operations by employing socket communication between workers via the halo manager. We observed that the proposed socket-based halo communication can effectively reduce the communication time in our experiments (section 4).

3.5. Neighborhood iterators. One novel feature of Vispark is that it provides a programming abstraction for accessing local neighbor data in the mapper. This does not fit well with the conventional data-parallel MapReduce programming model because the mapper is designed intentionally to process each individual data element without knowing its spatial neighborhood. However, this programming model significantly restricts the application of MapReduce on many array-based scientific data processing problems. Therefore, we provide Iterator, which walks over the neighbor of each data element in the mapper. Code 4 shows an example of Gaussian filter implementation using a plane iterator (line 6) that covers a \((2\times\text{kernel}+1)\times(2\times\text{kernel}+1)\) 2D range centered at the current data element location \((x, y)\) on the input array (in this example, \texttt{data}). In order to use the plane iterator, the user first defines the halo type and size depending on the task. In this example, a 2D plane iterator is used to collect local pixel values to compute a 2D convolution. Therefore, the halo type is \texttt{full}, and the size is the same as the Gaussian filter’s kernel size (line 22). Then, each data element defined in each iterator region can be visited sequentially using a \texttt{for} loop without manually computing the index of the data location (line 7).

![Vispark Partition](image)

Fig. 2. 2D halo example.

Code 4

Vispark Gaussian filter implementation using a plane iterator.

```python
def gaussian_filter(data, x, y, dimx, dimy, kernel, sigma):
    ret = 0.0
    val = 0.0
    PI = 3.141592
    ssq = sigma*sigma
    iter = plane_iter(x, y, kernel)
    for elem in iter:
        val = point_query_2d(data, elem)
        dx = elem.x - x
        dy = elem.y - y
        if(elem.x >= 0 and elem.y >= 0 and elem.x < dimx and elem.y < dimy):
            ret += val*(1.0/(2.0*PI*ssq)*expf(-((dx*dx+dy*dy)/(2.0*ssq ))))
```

```
return ((x,y),ret)

if __name__ == "__main__":
    sc = SparkContext(appName="Gauss_2d")
    img = Image.open(input_name)
    dimy = img.size[1]
    dimx = img.size[0]
    img = numpy.fromstring(img.tostring(),dtype=numpy.uint8).reshape(dimy, dimx)
    pixels = sc.parallelize(img,64,Tag="VISPARK",In=(16,8))
    pixels = pixels.vmap(gaussian_filter(data, x, y, dimx, dimy, kernelsize, sigma).range(dimx, dimy).halo(full, kernelsize))
    result = pixels.collect()

It is worth noting that introducing Iterator in Vispark not only adds flexibility to the MapReduce programming model but also improves the system performance significantly, especially memory footprints and running time. When the conventional MapReduce programming model is used, a common approach to implement algorithms for neighbor access is to generate multiple copies of input data for each neighbor location. Assume the input data are defined on a 2D array (i.e., 2D image). In order to access the data on the location (i+1, j) from the current location (i, j), we duplicate the input image and assign the key (i, j) to the data value at the location (i+1, j) on one image and at the location (i, j) on the other image, respectively. Then after shuffling key-value pairs generated by the mapper, the data value at (i, j) and (i+1, j) will be grouped and assigned to the same key (i, j). Therefore, the reducer can collect the list of neighbor data values for each key and perform the merging operation. Figure 3 shows that the mapper generates five copies of the input data for the center and its four neighbor directions (i.e., left, right, top, and bottom) for key-value pairs. By doing that, the size of the output of the mapper grows linearly with the size of the local neighbor access required by the algorithm, which is unnecessarily inefficient. For example, in order to apply Gaussian blur to a 2D image of 512 MB with a kernel radius of 5, the mapper should generate an intermediate data that is 11 * 11 = 121 times larger than the input image, which is 61 GB in size in theory! This problem becomes even more severe for higher dimensional data. We can avoid such an absurd processing scenario by using Vispark Iterator because the mapper can produce the final output without the reducer. In addition, since the entire shuffle and reduce steps can be skipped, the total running time can be reduced significantly.

Vispark provides two different types of iterators, i.e., array iterators (line, plane, and cube) and volume rendering iterators (orthogonal and perspective), listed as follows:

- **line_iter**: iterator along an 1D axis-aligned line;
- **plane_iter**: iterator defined on a 2D axis-aligned rectangle;
- **cube_iter**: iterator defined on a 3D axis-aligned cube;
- **orthogonal_iter**: iterator defined on a 3D viewing ray for orthogonal projection;
- **perspective_iter**: iterator defined on a 3D viewing ray for perspective projection.

Note that orthogonal-perspective iterators are designed specifically for volume rendering using ray casting. For each viewing ray, the iterator marches along the ray from the entrance to the exit point for a given 3D volume (Figure 4, right).

---

1. This shuffling memory overhead can be minimized by using `reduceByKey` instead of `groupByKey` if the local filter is a linear weighted sum of its neighbor values.
3.6. Vispark translator. Vispark was developed based on PySpark, a Python wrapper for Spark. Even though Vispark employs Python-like syntax, it cannot be executed by PySpark because the GPU mapper and Vispark-specific functions are not compatible with PySpark. In order to run a Vispark program, the Vispark translator should translate the input Vispark source code to intermediate code as follows: First, the Vispark main code is translated into the intermediate Python code that PySpark can execute. Next, the Vispark mapper functions are classified as either native Python or Vispark code, and Vispark mapper code will be translated into corresponding CUDA GPU code. Then, the mappers and reducers will be executed either on the CPU or the GPU depending on the type of its target architecture. The Vispark runtime system automatically will handle task offloading and memory synchronization for the GPU.

4. Results. Vispark is developed based on Spark version 1.2.1. We modified the source code of PySpark, a Python binding for Spark, with external modules, such as PyCUDA and NumPy, for GPU processing and array data handling in Python.
We also modified `spark-submit`, which is Spark's job submission script, to enable distributed job scheduling on a cluster system. Our prototype system is implemented and tested on an 8-node cluster system where each node is equipped with an octa-core Intel Xeon CPU, 32 GB main memory, and an NVIDIA GTX TITAN with 3072 CUDA cores and 12 GB graphics memory. We tested four representative visual computing benchmark problems, such as Gaussian image filtering, 3D volume rendering, K-means clustering, and heat transfer simulation, for performance assessment of Vispark.

### 4.1. Gaussian filter.

We picked a Gaussian filter as an example of a class of image processing problems using local neighbors. We compared three different Spark implementations (pixel-based, patch-based with Spark shuffle, and patch-based with socket communication) and the proposed Vispark implementation. In the pixel-based Spark implementation, we designed a map function in such a way that each pixel returns a list of key-value pairs in which the key is the neighbor pixel location within the filter kernel range and the value is the current pixel value multiplied by the Gaussian weight based on the distance from the current pixel to the neighbor pixel. You can think of this as scattering the current pixel value with the corresponding Gaussian weight to its neighbor pixels so that the convolution computation can be done in the reducer. The list returned by the mapper is decomposed into individual key-value pairs by the `flatMap` function. Finally, `reduceByKey` calls the reducer function to sum up all the values having the same key. The patch-based with Spark shuffle uses key-patch pairs by decomposing the input image into nonoverlapping patches and each mapper process gets a patch as an input. In this implementation, the mapper should walk over the entire patch and compute convolution using Gaussian weights. In order to handle boundary cases, another mapper should manually cut and exchange halo regions in Spark's shuffle/sort stage. You can think of this as a user implementation of halo exchange using Spark. The path-based with socket communication is an extension of the patch-based Spark by replacing the disk-based shuffle communication with the socket-based network communication for halo exchange. In this implementation, socket communication is implemented in the user-defined mapper function. In the Vispark implementation, socket communication is implemented in the Spark system, and the mapper can directly compute the convolution with the Gaussian kernel using a built-in iterator on GPUs without a reducer. Therefore, users just need to implement mapper functions and call them using `vmap` in the main function without explicitly managing halo communication in the user code.

Figure 5 shows the execution time of the Gaussian filter using Spark and Vispark on the input image with a size of 12125 × 3600 pixels. The performance of Vispark improves as the kernel size increases, up to around 66 times faster than pixel-based Spark implementation on a 13 × 13 kernel. This is due to the fact that Spark's system overhead is a dominant factor for a small kernel size, but the problem becomes compute-bound for a large kernel size. Therefore, GPU-acceleration plays a significant role in overall performance. Table 1 shows the I/O data size required to communicate in each implementation. It is shown that the execution time is significantly decreased for patch-based implementations. This is because the shuffle stage in pixel-based implementation increases the shuffle data size by kernel*kernel times, but the patch-based implementation only exchanges halo regions. The socket-based implementations further reduce the communication time by avoiding shuffle overhead of Spark and disk I/O. This also shows that Vispark's architecture improvements play another important role in system's performance.
4.2. Volume rendering. We implemented parallel direct volume rendering as a representative example for samplers and iterators in Vispark. The proposed parallel implementation is based on data decomposition and ray casting; that is, the input volume is decomposed and distributed, rendered in parallel, and the rendered images are combined to generate the final result. Ray casting walks along each ray per output pixel, samples the input volume, and applies transfer functions and alpha composition to generate the final pixel color. For the comparison, we implemented the same volume rendering method using Spark. Spark leverages data parallelism by partitioning the input volume—each worker generates a partially rendered image for the given data partition—but the worker process handles a group of rays (i.e., one ray per pixel in the output screen) in a serial fashion due to a limited number of parallel cores in each node. On the other hand, Vispark can implement the proposed parallel volume rendering using iterators (e.g., perspective and orthogonal) and samplers. In addition, a Vispark worker leverages pixelwise parallelism using the GPU—a Vispark worker generates a partially rendered image as in Spark, but each ray is assigned to a GPU core so that the rendering can be done in parallel.

After the mapper stage, intermediate rendered images need to be combined to the final resulting image. We implemented the binary-image swap composition using the iterative shuffle and reducer in Spark and Vispark. In the shuffle stage, each pair of images is assigned the same key value so that the reducer receives two images to be merged. This process is repeated \( \log_2 N \) times for \( N \) images so that the entire set of images are combined into the final image. In our experiment, we used the zebrafish volume data for which the dimension is \( 1856 \times 1612 \times 3240 \) and the output framebuffer size is \( 2048 \times 2048 \) pixels. Figure 6 is a rendered image using the Vispark ray-casting
volume renderer. As shown in Table 2, Vispark is about 72 times faster in rendering time and about 1.7 times faster in compositing time compared to Spark. Vispark outperforms Spark in rendering time due to its GPU parallel performance. Vispark also shows better composition time because fewer intermediate images need to be merged. Spark can reduce composition time by using large data partitions, but this significantly will increase the rendering time, which makes the entire running time much slower.

4.3. K-means clustering. K-means clustering is a commonly used benchmark program to test the performance of iterative tasks on MapReduce. We implemented the algorithm in Spark and Vispark using in-memory cache. The input dataset is 3 million of 784 dimensional points, and we tested using different clustering numbers, ranging from 20 to 320. The input data are read from HDFS, and we measured the first and the rest of the iterations separately to show the effect of Spark’s in-memory cache (i.e., Spark reads the data from disk in the first iteration but the data resides in memory and is reused in the following iterations).

Figure 7 shows the running time of K-means clustering iterations. The first iteration shows the running time with the overhead of data loading from the disk. This can be considered as the running time of K-means clustering on a conventional Hadoop system, which does not support in-memory cache. As shown in this graph, the first iteration times of Spark and Vispark differ by only around 10% for K = 20, but Vispark outperforms Spark by a large margin as the cluster number increases. For 320 clusters, Vispark’s first iteration is more than 2 times faster than that of Spark. The rest iteration time for K = 320 shows that Vispark largely outperforms Spark, up to about 11.5 times faster, because the main overhead (i.e., disk I/O) is removed by the in-memory cache effect. Note that as the number of clusters increases, the difference
Fig. 7. Running time comparison of K-means clustering iterations.

between the first and the rest iteration time in Spark (the gap between nonfilled and filled green bars) is reduced. This is because the K-means algorithm is compute-bound for a large number of clusters. It means that even though in-memory cache in Spark can improve the running time of iterative tasks significantly, this benefit is applicable only to computationally simple problems. If the task is compute-bound, then the difference between Hadoop and Spark may not be large. In such a case, Vispark can be a solution because the disk I/O overhead can be suppressed effectively by in-memory cache in Spark, while the computing overhead can be minimized by the GPU in Vispark. As a result, Vispark can be up to 14.6 times faster than the conventional Hadoop for compute-intensive iterative tasks.

4.4. Heat transfer simulation. Heat transfer simulation is a representative example of a scientific computing problem that uses an iterative numerical solver with halo communication. The simulation solves the heat equation (Equation 1) where the derivatives are approximated using a central difference discretization scheme.

\[
\frac{\partial u}{\partial t} = h^2 \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)
\]

We ran our experiment on a 4000 × 4000 × 2000 rectilinear grid, which is 128 GB in raw data size for a single precision floating point, and we split the data into 256 blocks so that each block is 512 MB in size. Figure 8 shows the in-depth analysis of the running time of a heat transfer simulation. Each running time is broken down into five groups: communication time, computing time, preparation time, serializer time, and Spark system overhead. We compared Spark and Vispark implementations of a heat equation solver where the main differences are communication and computation types. The Spark heat equation solver uses Spark shuffle for halo communication and CPU computation. On the other hand, Vispark uses socket-based halo communication and GPU computation. The Vispark heat equation solver (purple bars in Figure 8) is faster than the Spark solver, but the difference is not large, which is due to the fact that the heat transfer computation is not compute-bound and all the GPU overhead (e.g., context and memory management) is included in Vispark’s computing time. The performance benefit of Vispark implementation mainly comes
from the difference in communication performance (blue bars in Figure 8). The shuffle communication in Spark is significantly more expensive compared to the socket-based halo communication in Vispark.

4.5. Discussions. One of the main contributions of the proposed work is providing flexible and easy-to-use MapReduce programming tools that hide all the complicated data and computing resource management from the user, such as halo communication, GPU kernel execution, and CPU–GPU data transfers. In addition, Vispark provides various high-level domain-specific functions often used in visualization and computing problems, which further saves programmers the effort of writing long and complicated code. To assess the usability of the proposed programming language, we compare source lines of code (SLOC) of a heat transfer simulation written in Spark and Vispark (see Table 3). In the main function, SLOC of Vispark implementation is around one-third of the Spark-based implementations. That is mainly because Vispark provides a VRDD constructor that automatically analyzes input file types to leverage distributed file format in HDFS, but Spark does not support such functions; therefore, the user must handle the file I/O manually. For computation, socket-based Spark using user-provided CUDA code requires more lines than the other implementations. This is because the Python implementation and CUDA implementation of a heat equation solver are almost the same, so Python-based Spark implementations (i.e., Spark and Spark Socket) and Vispark show the same SLOC, but Spark with CUDA source code requires GPU device and memory management code to launch CUDA source code in Python mapper code in Spark. For communication, socket-based Spark implementations require more than twice the code length as in naive Spark implementation because halo data management must be done manually. In Vispark, there is no extra user-written code for halo communication except passing the halo size to the mapper function call, which is counted as only one line of code.

We also compared Vispark with an existing GPU MapReduce system. Most of GPU MapReduce systems reported in the literature were not available for download to the public, and the most similar system we were able to find was GPMR [20]. GPMR is written in C++ and MPI and requires user-written native CUDA code for GPU execution, so it is much more optimized for performance compared to Java-based
Table 3
SLOC comparison of heat transfer simulation in Spark and Vispark.

<table>
<thead>
<tr>
<th></th>
<th>Spark</th>
<th>Spark</th>
<th>Spark</th>
<th>Vispark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Socket</td>
<td>Socket</td>
<td>CUDA</td>
<td></td>
</tr>
<tr>
<td>Main</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td>Computation</td>
<td>15</td>
<td>15</td>
<td>55</td>
<td>15</td>
</tr>
<tr>
<td>Communication</td>
<td>125</td>
<td>327</td>
<td>327</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4
Running time comparison of K-means clustering in GPMR and Vispark (in seconds).

<table>
<thead>
<tr>
<th>Number of clusters</th>
<th>20</th>
<th>40</th>
<th>80</th>
<th>160</th>
<th>320</th>
</tr>
</thead>
<tbody>
<tr>
<td>First iteration</td>
<td>GPMR</td>
<td>83</td>
<td>85</td>
<td>88</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Vispark</td>
<td>115</td>
<td>115</td>
<td>117</td>
<td>121</td>
</tr>
<tr>
<td>Rest iteration</td>
<td>GPMR</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Vispark</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>16</td>
</tr>
</tbody>
</table>

Hadoop/Spark. Table 4 shows the running time of K-means clustering on GPMR and Vispark. Because GPMR is not compatible with HDFS, we manually distributed the input files to nodes and let the system read the data directly from the local disk. As for the first K-means iteration, GPMR is up to 25% faster than Vispark for the smaller cluster number (K = 20) because the system overhead dominates the total running time and GPMR has an unfair advantage in the experiment setup. GPMR does not use HDFS; therefore, the disk access is much faster, and C++-based implementation introduces less system overhead for initialization and management of task (e.g., managing Java virtual machines and processes for task execution). However, if the number of clusters increases (e.g., K = 320), computation becomes dominant and both systems show similar performance. As for the rest of the iterations, GPMR shows a much higher performance than Vispark due to the fact that GPMR’s K-means is based on highly optimized handwritten CUDA code, for example, leveraging shared memory and local reduction, while Vispark’s K-means relies on compiler-translated CUDA code and CPU-based reduction. Furthermore, GPMR leverages CUDA streaming for processing multiple blocks, but Vispark has some overhead in GPU context and memory management (due to the limitation of PySpark). Even though Vispark is a more general system and is not specifically optimized for handwritten GPU code execution, its performance is comparable to or even better than GPMR for the larger cluster number (e.g., K = 320) because GPMR does not fully support key-value array data type, and therefore, it requires more computations as the key size increases. It is also worth noting that programming in GPMR is more difficult compared to Vispark because the user must write native CUDA code as well as driver code in C++. In summary, Vispark demonstrated that its computing performance is comparable to that offered by the highly optimized C++-based GPU MapReduce system with much less programming effort.

Even though Vispark introduced significant performance improvement over Spark, our proposed system has some limitations as well. The current system provides GPU-acceleration in the mapper function only and shuffling (between mapper and reducer) is still relying on the conventional disk-based sorting provided by Spark. In the future, we plan to employ a GPU-based sorting algorithm to accelerate shuffling. Another limitation is that the current GPU implementation is not optimal, meaning that every time the CPU worker offloads the task to the GPU, GPU memory has to be newly
allocated. We are planning to implement GPU in-memory processing by reusing GPU memory so that CPU-GPU data communication can be minimized.

5. Conclusion. In this paper, we introduced Vispark, a GPU-accelerated distributed visual computing system. Vispark provides a high-level MapReduce language, which is similar to Python, provides novel data and processing abstractions, such as VRDD, iterators, and socket-based automatic halo communication, for GPU-accelerated local-neighbor access in MapReduce, and allows users to easily implement visual computing algorithms in a MapReduce framework. In future work, we will improve the performance of GPU processing in Vispark by implementing GPU in-memory cache and pipelining. Testing Vispark on a large-scale cluster system is on our to-do list.

REFERENCES


